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We previously developed a novel machine-learning-based brain age model that was sensitive to amyloid. We aimed to
independently validate it and to demonstrate its utility using independent clinical data. We recruited 650 participants from South
Korean memory clinics to undergo magnetic resonance imaging and clinical assessments. We employed a pretrained brain age
model that used data from an independent set of largely Caucasian individuals (n= 757) who had no or relatively low levels of
amyloid as confirmed by positron emission tomography (PET). We investigated the association between brain age residual and
cognitive decline. We found that our pretrained brain age model was able to reliably estimate brain age (mean absolute
error= 5.68 years, r(650)= 0.47, age range= 49–89 year) in the sample with 71 participants with subjective cognitive decline (SCD),
375 with mild cognitive impairment (MCI), and 204 with dementia. Greater brain age was associated with greater amyloid and
worse cognitive function [Odds Ratio, (95% Confidence Interval {CI}): 1.28 (1.06–1.55), p= 0.030 for amyloid PET positivity; 2.52
(1.76–3.61), p < 0.001 for dementia]. Baseline brain age residual was predictive of future cognitive worsening even after adjusting
for apolipoprotein E e4 and amyloid status [Hazard Ratio, (95% CI): 1.94 (1.33–2.81), p= 0.001 for total 336 follow-up sample; 2.31
(1.44–3.71), p= 0.001 for 284 subsample with baseline Clinical Dementia Rating ≤ 0.5; 2.40 (1.43–4.03), p= 0.001 for 240 subsample
with baseline SCD or MCI]. In independent data set, these results replicate our previous findings using this model, which was able to
delineate significant differences in brain age according to the diagnostic stages of dementia as well as amyloid deposition status.
Brain age models may offer benefits in discriminating and tracking cognitive impairment in older adults.
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INTRODUCTION
Models of the average ageing process are becoming prevalent in
multiple fields, and for a decade, brain ageing markers have been
used to identify important neuroanatomical differences in various
disorders. These markers may provide individualised risk-
assessments and predictions for age-associated neurodegenera-
tive diseases [1]. There is a shift towards identifying individual,
rather than average, differences that may provide tailored
predictions for long-term health outcomes [2]. Brain age is based
on machine learning to estimate an individual’s chronological age
from neuroimaging data [1–7]. Individuals whose brain structures
are estimated to be older than age-matched healthy peers may

have experienced a higher cumulative exposure to factors that are
associated with brain atrophy, were more impacted by those
pathologic factors, or alternatively reflect non-neurodegenerative
processes [8].
Recently, these models have been used to demonstrate the

association between greater brain age and cognitive impairment,
Alzheimer’s disease (AD), traumatic brain injury, and mortality
[3, 4, 6, 9, 10]. Given the relationship between ageing and disease,
there could be common underlying mechanisms. Concerning
complex brain diseases, combining ageing-related biomarkers
with more disease-specific biomarkers can lead to further
improvements in diagnostic and prognostic modelling of
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neurodegenerative disease [4]. Thus, brain age prediction
approaches may improve the assessment of individual risk for
neurodegenerative diseases, guide diagnostics and personalised
interventions [1, 2, 11]. Ideally, individuals identified as having low
cognitive function using traditional cognitive batteries, undergo
brain magnetic resonance imaging (MRI) to estimate their brain
age which can then be used to stratify risk for future cognitive
impairment; this can also be determine if a more rigorous
schedule of assessments needs to be done and identify possible
treatments to alter brain age and its trajectories. Additionally,
those at heighted risk may be considered for amyloid positron
emission tomography (PET) scans, especially in younger indivi-
duals. Given that brain age models utilise grey matter, they make
up the ‘neurodegeneration’ component of the Amyloid-Tau-
Neurodegeneration (ATN) model thus it is a natural progression
to develop models that reflect this component.
We have previously trained a machine learning model for

estimating brain age using grey matter volume in a sample of
healthy individuals without significant brain amyloid [3]. We
showed that this model predicted brain age that was greater in
amyloid-positive compared to amyloid-negative individuals [3].
We additionally showed that individuals with worse cognitive
function (e.g. AD) had greater brain age compared to those with
mild cognitive impairment (MCI) or non-demented controls [3].
We have shown preliminary feasibility in identifying advanced
brain age and its association with worry [11], rumination [11], and
chronic back pain [12]; however, the initial training model has not
yet been independently validated in a different ethnic population
and clinical setting. Moreover, the longitudinal changes in
cognitive function using this brain age model have not yet been
evaluated.
In this study, we aimed to independently validate the clinical

utility of this previously trained model for predicting future
cognitive decline in a new cohort. As another novel aspect of the
present study, we applied the brain age model, which was trained
primarily with Caucasian samples, to non-Caucasian data. We
analysed data from a large sample of South Korean participants
with subjective cognitive decline (SCD), MCI, and dementia
including AD who had amyloid PET scans, apolipoprotein E
(APOE) measurements, cognitive testing, and clinical data. We
tested the following confirmatory hypotheses: (1) participants with
cognitive impairment will have higher brain age than cognitively
normal older adults; (2) greater brain age will be associated with
worse cognitive function and disability at study entry; (3)
individuals who are amyloid positive will have greater brain age
compared to those who are amyloid negative. We will show
clinical utility by testing the following hypothesis: (4) baseline
brain age predicts future cognitive decline better than baseline
chronological age, APOE status, baseline amyloid levels, baseline
medial temporal lobe volume, and even baseline cognitive
function.

METHODS
Participants
This study was a part of the ongoing Biobank Innovations for chronic
Cerebrovascular disease With ALZheimer’s disease Study (BICWALZS)
and the Centre for Convergence Research of Neurological Disorders. The
BICWALZS was planned and initiated in October 2016 by the Korea
Disease Control and Prevention Agency for the Korea Biobank Project,
which is a national innovative biobanking program to foster biomedical
and healthcare research and development infrastructure. Memory clinics
of five university hospitals and a community geriatric mental health
centre were involved in this study. Participants were recruited voluntarily
from those who visited these neurology or psychiatry memory out-
patient clinics. The original goal was to facilitate, regulate, and ensure
optimal use of human biological specimens for research from real-world
data in the fields of SCD, MCI, AD and subcortical vascular dementia
(SVaD).

The clinical diagnosis criteria used for this study were as follows: SCD
criteria included self-and/or informant reports of cognitive decline, but no
objective impairment in cognitive tasks [no less than −1.5 SD in each of
neurocognitive test domain and Clinical Dementia Rating (CDR)= 0] [13];
patients with MCI were evaluated based on a CDR [14] score of 0.5 and the
expanded Mayo Clinic criteria [15]; patients with AD dementia were
evaluated using the National Institute on Aging-Alzheimer’s Association
core clinical probable AD dementia criteria [16]; and SVaD was evaluated
based on above-moderate white matter hyperintensity (WMH) and
vascular dementia criteria in accordance with the Diagnostic Statistical
Manual of Mental Disorders, fifth edition [17]. Patients with a history of
neurological or medical conditions, such as territorial cerebral infarction,
intracranial haemorrhage, Parkinson’s disease, heart failure, renal failure, or
others that could interfere with the study were excluded.
The BICWALZS is registered with the Korean National Clinical Trial

Registry (Clinical Research Information Service; identifier, KCT0003391). The
study was approved by the Institutional Review Board of Ajou University
Hospital (AJIRB-BMR-SUR-16-362). Written informed consent was obtained
from all participants and caregivers. Participants from the BICWALZS were
recruited at the memory clinics of seven university-affiliated hospitals and
community geriatric centres in South Korea. All participants were Korean
(Eastern Asian ethnicity). None of the participants in this study was a part
of the initial training sample of our previously trained model [3]. We
identified 687 participants (age range= 49–89 year; 80 SCD, 389 MCI
and 218 dementia) with 3D T1-weighted brain MRI from 2016 to 2020
and estimated each individual’s brain age. Among these individuals, we
used data from 650 participants (age range= 49–89 years; 71 SCD, 375 MCI
and 204 dementia) with available amyloid PET information for clinical
validation. Three hundred and thirty-six participants were followed up for
cognitive decline by annual assessment of clinical diagnosis and Clinical
Dementia Rating Sum of Box (CDR-SB) [14]. Among them, 284 subjects had
less than the score of CDR 0.5 and 240 subjects were diagnosed with SCD
or MCI at baseline, indicating cognitively none or only mild impairment
[18]. Duration of follow-up was 19.69 ± 8.66, 19.38 ± 8.44 and
19.44 ± 8.47 months, respectively.

Clinical and biological assessment
Clinical and biological assessments are described in the supplement.
Briefly, we collected data on neurocognitive battery including standardised
tests for language, visuospatial abilities, memory, and frontal/executive
function [19]. The participants underwent 18F-flutemetamol PET scanning.
To quantify 18F-flutemetamol retention, the standard uptake value ratio
(SUVR) was obtained using the pons as a reference region. Informed
consent was obtained from all participants regarding the collection and
genotyping of blood genomic DNA and APOE genotyping was obtained.
MRI T1 coronal images were used for the visual assessment and both left
and right medial temporal lobe atrophy (MTA) were visually rated
separately.

Brain age estimation
Methods for MRI acquisition and structural processing are described in the
supplement. Sequence parameters were reported in Supplementary
Table 1. We have previously validated a brain age estimation algorithm
that predicts chronological age with grey matter volume [3] using the
Pattern Recognition for Neuroimaging Toolbox [20]. Whole brain, voxel-
wise grey matter volume maps were mean-centered and used to calculate
a similarity matrix kernel [21] that was input into a Gaussian processes
regression to predict chronological age. The training set, which included
757 adult MRIs of individuals without any psychiatric or neurologic
disorder as well as Alzheimer’s pathology as measured by PET, has been
previously described [3]. These data were from the Alzheimer’s Disease
Neuroimaging Initiative, Information eXtraction from Images, and Open
Access Series of Imaging Studies (OASIS-3) which are all publicly available.
The cohort source was used as a covariate to account for differences in
scanner, site and protocol. Site effect was not added as a feature when
brain age was calculated as these data were not used as part of training,
thus would not affect the model itself. Site effect was added as covariate to
subsequent statistical models when modelling the association between
brain age and clinical variables. The participants of this present study were
not part of the training set. Using this pretrained model, we estimated the
brain age of each participant in the present study (estimated brain age of
the 687 participants is detailed in Supplementary Table 2. We used the
data of 650 participants with amyloid PET information for clinical
validation). While WMH might likely be a factor that influenced brain
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ageing, our brain age model utilises primarily grey matter and not white
matter data. Thus, our brain age marker could more accurately be
described as ‘grey matter’ age [11]. We additionally adjusted for the
intercept and slope (i.e., subtract the intercept and divide by the slope) of
the original brain age model, as this has been found to bias the brain age
predictions.

Statistical analysis
We conducted analyses using IBM SPSS 25 (IBM Corp., Armonk, NY, USA)
and R software (version 4.1.1; R Foundation for Statistical Computing,
Vienna, Austria). Scatter and violin plots were plotted using the R package
ggplot2. Survival curves were plotted using the R package Survminer.
We checked the violation of the assumption of homoscedasticity by

investigating skewness and kurtosis. We used the brain age residual as an
index of age-related brain health. Brain age residual is the residual error
after regressing out age, age squared, and sex onto brain age [brain age =
intercept + β1(age centred, individual chronological age-mean of
chronological age) + β2(age centred2) + β3(sex)+brain age residual].
Thus, high brain age residual represents greater brain age than expected at
that chronological age adjusting for sex. This residual was calculated for

every 650 participants. To examine whether the brain age residual was
associated with clinical factors, analysis of covariance, linear and multi-
nomial logistic regression analyses were conducted with the following
dependent variables: CDR-SB, neurocognitive tests scores, and diagnosis of
dementia while adjusting for age centred, age centred squared, sex,
education, intracranial volume, study site, amyloid PET positivity and APOE
e4 allele status. Using linear regression, we then investigated the
association between brain age (dependent variable) and the following
independent variables: age, age squared, sex, education, APOE e4, amyloid
PET positive, WMH severity and lacunae.
To validate the value of the brain age residual in identifying participants

with and without a diagnosis of dementia, the receiver operating curve
characteristic (ROC) curve and sensitivity and specificity levels were
evaluated in comparison with the traditional measures such as Mini Mental
Status Examination (MMSE), amyloid PET SUVR adjusting for age centred,
age centred squared, sex, education, intracranial volume, study site and
APOE e4 allele status. The cut-off score was determined based on maximal
sensitivity and specificity.
We then conducted survival analysis, using a Cox proportional hazards

regression and Kaplan–Meier estimator in individuals who had available
follow-up cognitive data (N= 366) to examine the capacity of brain age as
a predictive marker of the progression of cognitive decline. We also
conducted similar analyses in subgroups, primarily among participants
who were normal or only mildly impaired at baseline (subgroup I: less than
0.5 point of CDR at baseline assessment, N= 284; subgroup II: diagnosed
with SCD or MCI at baseline assessment, N= 240), and at this stage, it was
important to note whether they progressed to the level of dementia [22].
This analysis tested whether the brain age residual at baseline predicted
time-to-progression of cognitive decline. These analyses included several
covariates including age centred, age-centred squared, sex, education,
intracranial volume, study site, baseline CDR-SB, APOE e4 allele and
amyloid PET positive. In these analyses, we defined two prime events: 1)
the last follow-up when the CDR-SB score went beyond the known
confidence intervals (CI) of the annual rate of change [annual rate of
change (slope, 95% CI) in CDR-SB was known as 1.88(1.77–2.05) in those
who progressed to CDR 1 from baseline CDR 0 or 0.5] [23] for total and
subgroup I samples and 2) incident of clinical diagnosis with dementia for
subgroup II sample. We also calculated absolute standardised hazard ratios
[24] to compare brain age residual with MTA [25] and MMSE [26] as
predictors for future cognitive decline. In addition, we used likelihood tests
to compare nested Cox models. The z-transformation was applied to
normalise the continuous variables such as MMSE and brain age residual in
these analyses.

RESULTS
Demographic characteristics and brain age prediction
performance
We report the characteristics of the sample in Table 1, Fig. 1 and
Supplementary Table 3. The mean age of baseline participants was
72.49 ± 7.54 years, and their brain age was 75.34 ± 5.16 years. The
proportion of participants with a clinical diagnosis of MCI and
dementia was 57.7% and 31.4%, respectively, and 77.8% showed
cognitive impairment below the global CDR of 0.5.
The brain age prediction model was accurate with mean

absolute error (MAE)= 5.68 years, r(650)= 0.47; R2= 0.22 in the
total 650 sample. In previous Caucasian test set, the model
accuracy was MAE= 4.65 years, r(490)= 0.60; R2= 0.36 [3]. Unlike
our previous data set, our data contained many individuals with
dementia who were expected to have greater than average MAE.
The model was more accurate in the participants with SCD or MCI
with MAE= 5.10 years, r(446)= 0.57; R2= 0.32. Regarding amyloid
negative normal or SCD subject, the model performances were
MAE= 3.70 years, r(50)= 0.64; R2= 0.36 in the previous Caucasian
test set [3] and MAE= 5.09 years, r(63)= 0.69; R2= 0.46 in the
BICWALZS (Table 2). Considering the performance of previous
study [4, 27, 28], our model was able to predict chronological age
accurately within expected tolerance. The correlation map of brain
age residual with grey matter volume using voxel-wise analysis
was shown as the features for predicting brain age in
Supplementary Fig. 1.

Table 1. Clinical characteristics of study participants.

Total baseline sample
(N= 650)

Mean or n SD or %

Brain age, mean (SD), years 75.34 5.16

Age, mean (SD), years 72.49 7.54

Education, mean (SD), years 8.11 4.85

Female, n (%) 438 67.40

Comorbidity, n (%)

Hypertension 351 54.00

Diabetes mellitus 145 22.30

Hyperlipidemia 248 38.20

Cardiovascular disease 39 6.00

CDR, n (%)

0 13 2.00

0.5 493 75.80

1 114 17.50

2 or more 30 4.60

CDR-Sum of Box score, mean (SD) 2.96 2.72

Clinical diagnosis, n (%)

SCD 71 10.90

MCI 375 57.70

AD 137 21.10

SVaD 40 6.20

Other dementia 27 4.10

APOE genotype, n (%)

E2/E2 1 0.20

E3/E2 74 11.40

E3/E3 380 58.50

E4/E2 13 2.00

E4/E3 160 24.60

E4/E4 22 3.40

Amyloid PET positive, n (%) 255 39.20

Global amyloid SUVR score, mean (SD) 0.69 0.17

SD standard deviation, APOE apolipoprotein E, CDR clinical dementia rating,
SCD subjective cognitive decline, MCImild cognitive impairment, AD Alz-
heimer’s disease, SVaD subcortical vascular dementia, PET positron emis-
sion tomography, SUVR standardised uptake value ratio.
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The brain age of the non-dementia group showed a relatively
smaller deviation from its chronological age compared with the
dementia group, as illustrated in Fig. 1A and Supplementary Fig. 2,
with the line of best fit closely aligned to the reference line (i.e.,
brain age= chronological age) but less so for the dementia group.
In addition, the gap between brain and chronological age in
dementia group was more prominent at the early age bins.

Associations between brain age and clinical diagnosis and
measures of clinical symptoms
Greater cognitive impairment severity, measured by CDR-SB, was
associated with a greater brain age residual. Even after correcting
for multiple comparisons (using false discovery rate correction),
multiple measures were significantly associated with the brain age
residual, including the association between worse cognitive
function with greater brain age residual (B= 0.77, p < 0.001).

Among the association between neurocognitive test items and
brain age residual, Boston naming (B=−0.35, p < 0.001), Complex
Figure copy (B=−0.57, p < 0.001) and Stroop test (B=−0.52,
p < 0.001) were relatively high. Details of the linear regression
results for associations of brain age residual and cognitive
function are described in Supplementary Table 4. Participants
with dementia showed a greater brain age residual (0.33 ± 1.08)
compared with those with SCD (−0.50 ± 0.89) and MCI
(−0.08 ± 0.92), even after adjusting for age centred, age centred
square, education, intracranial volume, and study site (analysis of
covariance: F= 21.09, R2= 0.07, p < 0.001) (Fig. 1B). In the
regression model with brain age as the dependent variable, we
found that greater amyloid deposition was significantly associated
with greater brain age as was chronological age and male sex
compared to female sex (Fig. 1C, Supplementary Table 5, and
Supplementary Fig. 3).

Fig. 1 Characteristics of brain age according to clinical diagnosis and amyloid deposition status at baseline in all participants.
A Association between brain and chronological ages according to clinical diagnosis. B Distribution of brain age residual according to clinical
diagnosis. C Association between brain and chronological ages according to the presence of amyloid deposition. D Association between brain
age residual and the CDR-SB score according to the presence of amyloid deposition. Brain age residual was calculated as (brain age =
intercept + β1[age centred] + β2[age centred squared] + β3[sex] + brain age residual). * Analysis of variance were conducted (p < 0.05).
Abbreviations: SCD subjective cognitive decline, MCI mild cognitive impairment, MAE mean absolute error, CDR-SB Clinical Dementia Rating
Sum of Box, PET positron emission tomography.
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Multinominal logistic regression and ROC curve analysis for
current cognitive impairment
Using multinomial logistic regression, we found that greater brain
age was associated with a higher odds ratio (OR) for MCI and
dementia compared to that for individuals with SCD [OR (95% CI)
for MCI= 1.54 (1.13–2.12); OR (95% CI) for dementia= 2.52
(1.76–3.61)] (Table 3). The OR of the brain age residual for MCI
and dementia was not affected by demographic factors, APOE
e4 status, or amyloid deposition status. Using a similar approach,
we found that greater brain age was associated with a higher OR
of amyloid positivity compared to amyloid negativity even after
adjusting for similar factors [OR (95% CI) for amyloid positivity =
1.28 (1.06–1.55)] (Table 3).
To demonstrate the association between cognitive status and

brain age residual, we conducted an ROC analysis in three
groups (total sample, under 77, and under 70 years) based on
tertile values. In the total baseline sample, the ROC analysis of
the brain age residual for dementia resulted in an area under the
curve (AUC) of 0.761, sensitivity of 0.686 and specificity of 0.716.
The AUC value of brain age was lower than that of MMSE (AUC
of 0.876) or amyloid PET (AUC of 0.785), but similar to the value
of the cross-validation test set in the previous study (AUC of
0.710) [3]. In the subgroup analyses by age, the brain age
residual resulted in an AUC of 0.782 (under 77 years) and 0.870
(under 70 years) respectively, showing a trend for better
performance for a classification in younger individuals (all
models are described in Supplementary Table 6 and Supple-
mentary Fig. 4).

Initial brain age residual predicts longitudinal cognitive
worsening
Of the entire sample, 366 participants were followed up for
cognitive function through annual CDR-SB assessment. Among
them, 284 participants had a CDR less than 0.5 and 240
participants were diagnosed with SCD or MCI at baseline
assessment. Their mean follow-up durations were 19.69 ± 8.66,
19.38 ± 8.44 and 19.44 ± 8.47 months, respectively. Detailed
characteristics of these samples are described in Supplementary
Tables 7 and 8. We investigated two cognitive endpoints: 1)
increased CDR-SB score at a rate >2.05 points/year from the
baseline CDR-SB score at the final follow-up for the total sample
and 284 subsets and 2) dementia incidence for the 240 subsets.
Using a Cox proportional-hazards regression model, the hazard
ratios (HRs) in the total sample (366 participants) of the brain age
residual for cognitive endpoint was 1.94 (1.33–2.81, p= 0.001). In
the 284 and 240 subsets, the HRs were 2.31 (1.44–3.71, p= 0.001)
and 2.40 (1.43–4.03, p= 0.001), respectively. These results were
statistically significant even after adjusting for APOE e4 and
amyloid PET positivity. Detailed results of Cox proportional
hazards regression and the Kaplan–Meier estimator are shown in
Table 4 and Fig. 2. Using an absolute standardised HR, we
investigated MTA, MMSE and amyloid PET positivity as predictors
of cognitive decline or incident dementia and found that brain
age residual [HR (95% CI)= 2.31 (1.44–3.71), p= 0.001] was able to
predict future cognitive decline, but amyloid PET positivity [HR
(95% CI)= 1.58 (0.59–4.24), p= 0.363] could not do in the subset
with a baseline CDR less than 0.5. We also found that brain age
[HR (95% CI)= 2.40 (1.43–4.03), p= 0.001] might be a good
predictor for the incident dementia unlike MMSE [HR (95%
CI)= 1.22 (0.86–1.76), p= 0.288], Rt. MTA [HR (95% CI)= 1.57
(0.86–2.88), p= 0.143] and Lt. MTA [HR (95% CI)= 1.69 (0.85–3.36),
p= 0.133] (Supplementary Table 9). In the likelihood ratio tests to
compare nested Cox models, the model of brain age residual with
amyloid PET positivity showed better fit than those of amyloid PET
positivity only (N= 366, χ2= 12.90, p < 0.001; N= 284, χ2= 12.70,
p < 0.001; N= 240, χ2= 13.02, p < 0.001). Conversely, the addition
of MTA or MMSE could not affect the goodness of fit of brain age
residual included Cox model for predicting the incidenceTa
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dementia [Rt. MTA (χ2= 0.18, p= 0.673), Lt. MTA (χ2= 0.37,
p= 0.542), MMSE (χ2= 0.00, p= 0.992)] (Supplementary Table 10).

DISCUSSION
We independently validated our previous brain age model results
from a clinical perspective, which showed associations between
greater brain ageing and amyloid positive status (compared to
negative), lower cognitive function, and dementia (compared to
MCI or SCD). These data were obtained from a highly different
group that included all South Korean individuals, whereas our
training data included primarily Caucasian individuals. This
replication shows that these effects are generalisable to various
samples. We additionally showed that baseline brain age had
some benefit in predicting future cognitive decline or incident
dementia compared to baseline age, MTA, MMSE, and amyloid
levels, indicating that it may be a marker of propensity. Since
baseline brain age was predictive of future cognitive decline (even
in those without dementia), brain age measurements may be a
good tool for monitoring efficacy of preventative approaches and
treatment as well as diagnostic prediction. Since our brain age
measure is associated with future impairment, this may not only
allow for early detection of AD vulnerability, but also allow for
much earlier interventions. While the association between age and
brain age exhibited a steeper slope for the dementia group
(compared to MCI or SCD), this was primarily driven by younger
individuals who have dementia. Note, for instance, that younger
dementia patients have a much higher brain age and that, in
general, dementia patients have a greater brain age.
These results are consistent with those of previous studies

applying MR-based brain ageing. Past studies have shown the
association between accelerated brain ageing and dementia
severity, primarily with prospective decline of cognitive function
[29, 30], MCI, and dementia compared to control groups [31], as
well as conversion to dementia [7, 32]. Our model previously built
on this literature by incorporating amyloid status (i.e. excluding
those who had significant amyloid in the brain), we included only
individuals who were amyloid negative when training the brain
age model [3]. Our previous work [3] showed accelerated ageing
in cognitively more impaired or amyloid-positive individuals,
which we have now replicated in a completely independent
sample. This sample has significantly different characteristics in
both ethnicity and the data collection setting than the training set
as it includes only South Korean individuals (East Asian); however,

Table 3. Association of the brain age residual with MCI, dementia and amyloid deposition assessed by multinominal logistic regression.

Reference: SCD (n/N= 71/650) MCI (n/N= 375/650) Dementia (n/N= 204/650)

OR 95% CI p value (FDR correction) OR 95% CI p value (FDR correction)

Model 1 1.57 1.20 2.06 0.004 2.43 1.80 3.27 <0.001

Model 2 1.51 1.12 2.03 0.017 2.37 1.71 3.29 <0.001

Model 3 1.54 1.13 2.09 0.018 2.57 1.82 3.63 <0.001

Model 4 1.54 1.13 2.12 0.018 2.52 1.76 3.61 <0.001

Reference: Amyloid PET negative
(n/N= 395/650)

Amyloid PET positive (n/N= 255/650)

OR 95% CI p value (FDR correction)

Model 1 1.19 1.02 1.40 0.030

Model 2 1.22 1.03 1.46 0.030

Model 3 1.28 1.06 1.55 0.030

SCD subjective cognitive decline, MCImild cognitive impairment, OR odds ratio, CI confidence interval, APOE apolipoprotein E, PET positron emission
tomography.
Brain age residual was calculated as (brain age= intercept + β1[age centred] + β2[age centred squared] + β3[sex] + brain age residual), and multinomial
logistic regression was conducted.
Model 1: Brain age residual (continuous variable); Model 2: Model 1 + age centred, age centred squared, sex, education, intracranial volume, and study site;
Model 3: Model 2 + APOE e4; Model 4: Model 3 + amyloid PET positive.

Table 4. Association of the baseline brain age residual with cognitive
decline by Cox proportional hazards models in follow-up participants.

Total participants
(N= 366)

Cognitive end point: CDR-SB increased at a
rate > 2.05 points/year from the baselinea

(n/N= 41/366)

HR 95% CI p value (FDR
correction)

Model 1 1.71 1.26 2.32 0.001

Model 2 1.95 1.34 2.84 0.001

Model 3 1.97 1.36 2.85 0.001

Model 4 1.94 1.33 2.81 0.001

Participants with
baseline CDR ≤ 0.5
(N= 284)

Cognitive end point: CDR-SB increased at a
rate > 2.05 points/year from the baseline*
(n/N= 22/284)

HR 95% CI p value
(FDR
correction)

Model 1 1.69 1.13 2.54 0.011

Model 2 2.33 1.44 3.76 0.001

Model 3 2.34 1.46 3.75 0.001

Model 4 2.31 1.44 3.71 0.001

Participants with
baseline SCD or MCI
(N= 240)

Cognitive end point: Incident dementia
(n/N= 20/240)

HR 95% CI p value
(FDR
correction)

Model 1 1.93 1.25 2.98 0.003

Model 2 2.43 1.47 4.03 0.001

Model 3 2.49 1.49 4.14 0.001

Model 4 2.40 1.43 4.03 0.001

Brain age residual was calculated as (brain age = intercept + β1[age
centred] + β2[age centred squared] + β3[sex] + brain age residual) in
these samples.
Model 1: Brain age residual; Model 2: Model 1+ age centred, age centred
squared, sex, education, intracranial volume, study site, and baseline CDR-
SB; Model 3: Model 2 + APOE e4; Model 4: Model 3 + amyloid PET positive
HR hazard ratio CI, confidence interval, CDR-SB clinical dementia rating sum
of box, PET positron emission tomography, APOE apolipoprotein E
aCognitive end point (time-to-event) was defined when the CDR-SB score
increased at a rate >2.05 points/year from the baseline CDR-SB score at the final
follow-up [Annual rate of change (slope, 95% CI) in CDR-SB was known as 1.88
(1.77–2.05) in those who progressed to CDR 1 from baseline CDR 0 or 0.5] [23].
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the model still reliably predicted brain age and replicated our
previous findings that brain age was associated with amyloid
status and cognitive function (including cognitive batteries and
dementia diagnosis). We now additionally show that in survival
analyses the brain age residual was associated with cognitive
decline even after adjusting for baseline age, amyloid, and APOE
e4 status. Our model outperformed baseline MMSE and MTA as
predictors of future decline or incident dementia, showing better
performance in a classification in cognitively normal or mildly
impairment levels. As expected, brain age was a predictor of
current cognition but did not necessarily outperform other metrics
but on the other hand, brain age was a better predictor of future
cognitive decline. Given that brain age is a holistic measure of
neurodegeneration, it is expected that it would most closely tie to
risk of cognitive decline since it is temporally further down in the
ATN model of AD (thus those with neurodegeneration or low grey
matter volumes are at greatest risk).
These results demonstrate that there is potential clinical utility

of brain age models in the monitoring of older adults with
cognitive impairment, further expanding existing literature [1–3, 30].
Considering that MRI is relatively inexpensive, non-invasive and
commonly conducted in patients with cognitive concerns, brain age
models may offer benefits in improving the accuracy of clinical
diagnosis and informing decision-making in addition to PET
imaging and genetic testing. Brain age models, compared to
conventional screening tools and visual rating methods, may be
informative for predicting future cognitive decline.
Many clinical trials for AD have failed [33], and this may, in part,

be attributable to heterogeneous pathology and varying lifestyle
and medical factors (e.g. diet, education, mental exertion, leisure
participation, multilingualism, sleep, trauma, physical activity,
concurrent medications and illnesses) [34]. It has been suggested
that future clinical evaluation of AD therapeutics should consider
the potential impact of these variables [34], and brain age may act
as a holistic measure of multiple processes that converge on
neurodegeneration in various ways. Cole et al. [35] proposed that
brain age models automatically place an individual’s brain health
in context for their age, summarising complex information
regarding neurodegenerative pathology in an intuitive and
accessible manner, which could be a key advantage of the brain
age paradigm over brain volume or longitudinal atrophy

measures. Additionally, Franke and Gaser [1] suggested that this
predictive analytical method provides a personalised biomarker of
brain structure. This could help to elucidate and further examine
the patterns and mechanisms underlying individual differences in
brain structure and disease states. Because brain-age estimation is
performed on an individual level, the brain age biomarker may be
very well suited for clinical use.

Limitations
There are some limitations that should be considered. Our brain
age model incorporates only information from T1-weighted
structural scans that focused primarily on grey matter. Diffusion-
weighted imaging, fluid-attenuated inversion recovery, and
functional imaging are known to change with advancing age
and are linked with ageing-related brain disease such as
subcortical ischaemia. Integrating these additional data into brain
age algorithms may produce biomarkers more predictive of
pathogenic brain ageing [1]. We did not evaluate longitudinal
brain aging, so it is unclear whether these brain age markers
change over time in those with high amyloid (compared to low),
AD or MCI (compared to controls), cognitive decline, or those who
convert to MCI or AD from controls. In parts of the clinical analysis,
the SCD group was used as a de facto control group according to
the SCD working group criteria because these participants were
from real-world memory clinics [13]. However, SCD might be a
contentious category and differ from the cognitively intact state.
Thus, the question regarding the utility of this tool in predicting
conversion to MCI or dementia in cognitively intact older adults
remains. Moreover, we found that the brain age residual of SCD
and MCI were negative values, on average, even though the raw
gaps between the brain and chronological age had a positive
tendency in our samples (Supplementary Table 11). Overall, this
validation data showed a higher brain age than chronological age
due to the property of cognitively impaired sample. Brain age
residual in the regression was a relative location of the fitted value
within this dataset with SCD, MCI and dementia. Hence, it should
be noted that the negative average of brain age residual in SCD
and MCI does not mean ‘younger brain than its chronological age’.
Therefore, it is necessary to be careful while interpreting the
meaning of the brain age residual (Supplementary Fig. 2). This is a
major limitation of the current work as the sample was recruited

Fig. 2 Kaplan–Meier plot for time-to-event comparison between individuals with higher and lower brain age residuals among follow-up
participantsǂ. Brain age residual was calculated as (brain age = intercept + β1[age centred] + β2[age centred squared] + β3[sex] + brain age
residual) in these samples. *Cognitive end point (time-to-event) was defined when the CDR-SB score increased at a rate >2.05 points/year from
the baseline CDR-SB score at the final follow-up (Annual rate of change (slope, 95% CI) in CDR-SB was known as 1.88(1.77-2.05) in those who
progressed to CDR 1 from baseline CDR 0 or 0.5) [23]. ǂLog rank tests were conducted for the follow-up participants. Abbreviations: CDR
Clinical Dementia Rating, CDR-SB Clinical Dementia Rating Sum of Box.
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primarily from clinics/hospital settings though this could also be
seen as a strength in a naturalistic setting. In addition, age ranges
between training (20–85 years used to train the model) [3] and the
test sets (49–89 years) were not exactly matched, which might
affect the performance and generalisation of this model. In fact,
the SCD and MCI groups showed a negative brain age residual
tendency while the dementia group showed a positive value
under 80 years of age, but our model was less likely to
discriminate the diagnostic group over 80 years of age. Lastly,
the data were collected at multiple sites, we accounted for this in
our statistical modelling. In some ways, this is a strength of the
current result that these results generalise across multiple sites.

CONCLUSION
These results from a highly clinical dataset demonstrated that
there is potential utility of machine-learning brain age models in
the monitoring of cognitive decline and detection of amyloid
status in elderly patients. When considering that MRI are
commonly conducted in memory clinics, our brain age models
may offer benefits for tracking of disease progress, development
of preventative approaches and even monitoring treatment.

DATA AVAILABILITY
The datasets analysed during the current study are available from the corresponding
author on reasonable request.
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